Structural Theorems for Families of Fourier Hyperfunctions
نویسندگان
چکیده
منابع مشابه
Polylogarithms, Hyperfunctions and Generalized Lipschitz Summation Formulae
A generalization of the classical Lipschitz summation formula is proposed. It involves new polylogarithmic rational functions constructed via the Fourier expansion of certain sequences of Bernoulli– type polynomials. Related families of one–dimensional hyperfunctions are also constructed.
متن کاملAsymptotic hyperfunctions, tempered hyperfunctions, and asymptotic expansions
We introduce new subclasses of Fourier hyperfunctions of mixed type, satisfying polynomial growth conditions at infinity, and develop their sheaf and duality theory. We use Fourier transformation and duality to examine relations of these asymptotic and tempered hyperfunctions to known classes of test functions and distributions, especially the Gel’fand-Shilov spaces. Further it is shown that th...
متن کاملFourier transformation of Sato’s hyperfunctions
A new generalized function space in which all Gelfand-Shilov classes S ′0 α (α > 1) of analytic functionals are embedded is introduced. This space of ultrafunctionals does not possess a natural nontrivial topology and cannot be obtained via duality from any test function space. A canonical isomorphism between the spaces of hyperfunctions and ultrafunctionals on R is constructed that extends the...
متن کاملA Massera Type Theorem in Hyperfunctions in the Reflexive Locally Convex Valued Case
We continue our study on Massera type theorems in hyperfunctions from [11] and [12]. In the latter, we gave a result in hyperfunctions with values in a reflexive Banach space. In this article, we report its generalization to the case of hyperfunctions with values in a reflexive locally convex space. AMS Mathematics Subject Classification (2010): Primary 32A45; Secondary 32K13
متن کاملRight inverses for partial differential operators on Fourier hyperfunctions
We characterize the partial differential operators P (D) admitting a continuous linear right inverse in the space of Fourier hyperfunctions by means of a dual (Ω)-type estimate valid for the bounded holomorphic functions on the characteristic variety VP near R . The estimate can be transferred to plurisubharmonic functions and is equivalent to a uniform (local) Phragmén–Lindelöf-type condition.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2002